
Journal of Statistical Physics, VoL 29, No. 4, 1982 

Triviality of if4 and All That in a Hierarchical 
Model Approximation 

K. Gawgdzki 1'3 and A. Kupiainen 2 

Received June 25, 1982 

The infrared behavior of lattice ~d 4, d ) 4 ,  and dipole gases in d/> 1 is 
rigorously shown to be Gaussian within the context of a hierarchical approxima- 
tion. Methods are developed to generalize the result beyond this approximation. 
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1. INTRODUCTION 

In this paper we develop some new methods allowing a nonperturbative 
control of the Kadanoff-Wilson renormalization group (RG). Our aim is to 
apply the R G to prove that the long-distance behavior of weakly coupled 
lattice (fi4 theories in dimensions d i> 4 and dipole gases and the like in all 
dimensions is Gaussian. Here we will establish this claim in a hierarchical 
approximation to these models. 

In previous papers the authors have used the RG to study certain 
massless perturbations of the free massless lattice field. Reference 1 studied 
the pressure of the (V~) 4 model and Refs. 2 and 3 the correlation functions 
and RG trajectories of Hamiltonians in a simplified version of this model. 
However, that analysis was not completely satisfactory due to the bound- 
edness of the block fluctuations we had to  assume. In the present paper 
we use some techniques based on analyticity properties of the transforma- 
tion to control this problem. In order to separate it from other ones we 
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work in a hierarchical approximation. To briefly recapitulate the motiva- 
tion for the definition of the hierarchical models we recall 0) that the 
massless Gaussian lattice field (0 can be decomposed in terms of (almost) 
identically distributed independent massive flucutation fields gn describing 
fluctuations on scale Ln:  

(0x = ~ L-n(d-2)/2( (~n~'n)x/Ln (1 . l )  
n=0 

where the kernels a n on L - n 2 ~  a X 7/d have exponential decay uniformly in 
n. The hierarchical approximation is obtained by making ~ local and by 
representing the ~ ' s  in a block by one ~:~o. More precisely we write 

,(d-a)/2A ~,, (1.2) (02 = ~ L -  ~iL-,xl~tL-.-lxl 
n=0 

where [ ] denotes the integral part. We take L even, Ax = + 1, and the 
average of A over the blocks of size L d to be zero. Z"'s are assumed to be 
ultralocah all Z] 's are independent with the same Gaussian distribution. 

The approximations made above consist essentially of cutting off 
exponentially decaying tails of various kernels. In subsequent papers this 
error will be dealt with by a cluster expansion. Here we will only restrict 
ourselves to developing the analyticity techniques to deal with the un- 
boundedness of the Z"'s. These will generalize in a natural way to the 
realistic models. 

Our hierarchical model is closely related to the one introduced by 
Dyson. (4) The proofs will easily be adapted also to this model which was 
previously considered by Bleher and Sinai, (s'6) who proved the results for 
(04 in d > 4. Besides covering the interesting borderline case d = 4 our proof 
is considerably simpler than the quite involved one of Refs. 5 and 6. 

Finally let us comment on the relation of the present results to those of 
Ref. 7. The infrared asymptotic freedom of weakly coupled lattice (04 
(proven here for the hierarchical approximation) does not imply that all 
scaling limits of this theory are trivial, leaving the possibility of building 
such a limit around a strong coupling ultraviolet fixed point. This possibil- 
ity is (almost) eliminated in Ref. 7 by means of correlation inequalities 
providing the information about the model in the whole range of coupling 
constants. Nevertheless extending our control of RG to theories like (04 with 
slow ( ~  inverse logarithm of the momentum) convergence to infrared 
Gaussian fixed point would be a big step to control similar situations in the 
ultraviolet region occurring, e.g., in the d = 2 nonlinear o model or d = 4 
non-Abelian gauge theory. There, however, the implication would be the 
existence of a nontrivial continuum limit. 

The results of this paper appear in Section 2 and the main ideas 
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involved are in Section 3.1. The subtleties of q# can be found in Section 3.2. 
Reading the paper requires no previous knowledge of RG. 

e x p [ -  tv(~)]  = 

where 

2. THE M O D E L S  A N D  THE R E S U L T S  

Most of this paper is devoted to the study of the following nonlinear 
transformation t: 

f d / t ( z ) e x p ( -  �89 Ld[ v(Y4' + z) + v(Y~P- z) ]}  

f dt~(z)exp [ _ L dv(z) ] (2.1) 

, exp( 

y is a parameter taking values L -d/2, d ~/ 1, or L -(a-2)/2, d ~/4. L is an 
even integer. The case L-d /2  will be called the "dipole gas model" and the 
case L -(a-2)/2 the ,,~4 model." The first is related to perturbations of 
the massless Gaussian which depend on ~ through Ve~ only, such as 
~ , x ( 7 ~ x )  4 (the anharmonic crystal) or - ~ x f d V ( ~ ) c o s ( ~ .  V~x) (the di- 
pole gag). The connection between these models and (2.1) is the following. 
From (1.1) we have 

Vq) x = ~ L-na/2(V~n ~n)x/L,,. (2.2) 
n 

We write a hierarchical approximation to this by taking as our basic field 
N - 1  

-.d/2~ 7" . (2.3) 
n = 0  

where we have put the system in a box of size L NU. A will be chosen so that 
A~ = + 1 and ~,tr-ixl =yA~ = 0 for all y and that A is invariant under 
translations by L in each direction. The Zff's are all independent Gaussians 
with covariance one. In the ~4 case the basic field is given by (1.2). In both 
cases we introduce a potential V(~)) to be specified below and define the 
expectation 

N - 1  

1 fexp[-v( )] II IId (z;) (2.4) 
H ~ 0  X 

with % being the normalization. The R G  transform TV of V is just the Z 0 
integral 

e x p [ -  TV(r  = f e x p [ -  V(y~p[./L ] + A .  Z?./z])]rIxd#(Z~ ) 
f e x p [ _ V ( A .  Z~,/Ll)][i~d~(ZO ) (2.5) 
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where, basing on (2.3) or (1.2), we have written 

0 (2.6) Ox = 7t)tx/r] + AxZtx /L  1 

"/being either L -d/2 or L -(a-~2)/2. 
The point of the hierarchical model is that for a local V, V(0) 

= ~,x V(Ox), r factorizes: 

rv(q~) = 2 tv(~x) (2.7) 
x 

with 

e x p [ - t V ( ~ x )  ] = ;exp[ - -2EY/L l=xV(Y t )x  + AYz)]d l~(z )  (2.8) 
f exp [ - 2[y/Ll  = x v (Ayz)]  dl~ (z )  " 

With the use of Ay = _+ 1, ~4y/LI =xAy = 0 and assumption that v is even, 
(2.8) becomes (2.1) (given the assumptions on v stated below, there is some 
abuse of notation (2.1) and (2.8): e -v and e -t" may vanish somewhere). 

Our aim is to study the transformation t and to show that its iteration 
drives a very general class of v's to a "Gaussian fixed point." More 
precisely, for 7 = z - d / 2  we wish to show that t"v ~ �89 c(v)0 2 (for all d) and 
for " /= L - (d- 2)/2, t" [v -- �89 c (v)0 2] ~ 0 for a suitable "mass counterterm" 
1 2 c0 (in the first case c corresponds to the wave function renormalization 

i.e. the dielectric constant). Moreover we wish to establish a sufficiently 
strong convergence so that the Gibbs states would converge. 

Now let us define the class of v's which we are going to study (for 
motivation see the next section). In the dipole gas case we assume that 
e -v = g satisfies the following conditions: 

(a) g(0) is analytic in the strip IIm0[ < B, g(0) = g ( - 0 ) ,  g(0) = 1, 

I gl < exp[~[012]; 
(b) for 101 < B there exists an analytic v, v(0) = �89 c02 + g(0) where 

6(0) = 0, ( d 2 U d @ ) ( 0 )  = 0, Icl < ~, 161 < •. 
There are three parameters entering in the above definition: B, x, and ~, 
Notice that we admit potentials of rather general type as, e.g., the 
semibounded polynomials as well as the trigonometric ones (e.g., ~k0 4 and 
Xcos0). The upper bound in (a) with x <�89 L -d assures stability. 

For  the 0 4 case  we take the following assumptions: 
(a') g is analytic in the strip IIm01 < B, positive for real 0, g(0) 

--- g ( - 0 ) ,  g(0) = 1, Ig(0)l < e x p [ -  �89 4] for 101 >I B and IIm01 
< 2L- I B ,  ~/> 0; 

(b') for [0[ < B there exists an analytic v, v ( 0 ) =  i 2 C 0 -1- T/0 4 "4" 6 ( 0  ) 

where 6(0) -- 0, (dZ t /d02) (0)  = 0, (d46/d04)(0)  = 0, 161 < ~2. 
They are again natural since 0 4 is the least stable (or marginal for d = 4) 
direction of the linearized transformation dr. 
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Below we shall state the results obtained in the present paper under the 
assumptions that B > B 0, ~/< 7/0, L > L0, and x < x 0 with B o, ~1o, Lo, and 
x0 chosen suitable. The restriction L/> L 0 is not serious since we may 
always increase L by considering a composition of several RG transforma- 
tions t. 

2.1. EXISTENCE OF THE THERMODYNAMICAL LIMIT 

The states ( )N given by (4) converge when N ~ oe to infinite volume 
states ( )v, e.g., in the sense of convergence of expectations of products of 

~x~'S. 

2.2. CONVERGENCE OF EFFECTIVE POTENTIALS 

A. Dipole Case. exp(-t'v)--G_~exp[-�89162 2] uniformly on 
compacts in •. 

B. ~4 Case, There exists c(v) such that for c = c(v) [see (b') above] 
e x p [ - t " v ] ~  1 uniformly on compacts in R [fixing c to be equal c(v) sets 
the temperature at its critical value]. 

2.3. Decay of Correlations 

A. Dipole Gas Case. The two-point function satisfies 

f l g ( x  ' y) -d  < I(r < f2d( x, y)-d  

B, ~4 Case. For c = c(v) (see 2.2B) 

C d~x . -d+2 f ld(X,Y)  -d+2<~ I(d?xdPy~v] <~ 2 ( , Y )  

where d(x, y) is defined as inf (L k : [L-kx]  = [ L - ~ ] } .  

2,4. AnalyUcity. Dipole Gas Case 

If v~ is an analytic family of potentials satisfying our assumptions (e.g., 
v = -Xcosq,)  then c(v) and the correlation functions are analytic in X (the 
same is true about the infinite volume pressure). 

3. ITERATIONS OF THE RG 

In this section we shall consider the iterations of (2.1). The motivation 
for the assumptions on v given in Section 2 comes from the following 
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considerations. Take first the IqJ[ < Bregion. If d/~ had compact support (of 
the order B), the iteration of (2.1) would be easy (see Ref. 2). On the other 
hand big Z occurs with small d/~ probability. Here comes the assumption 
(a) or (a') which allows us to estimate the big Z contribution and to show 
that it is small. Since the integrand contains only y+ and ~, < 1 exp ( - t v )  
will be in fact analytic in a wider strip. This allows us to expand the "small 
field region" during the iteration, eventually to infinity. 

3 , 1  �9 Dipole Gas 

Suppose that g satisfies (a) and (b) with B = n o + n, 7/= 8 "~ 8 < 1. 
n >f 0 will count the RG transformations given in terms of g by 

f dl~ (z)f(O, z) 
g'(0) --- f a/~ (z)f(0, z) 

where 

(3.1) 

f dt~(z)[1 - ~ ( z )  Jf(O,z) 
gi((h)= [g,l(O)fd#(z)f(O,z)] -- (q)=0)  (3.7) 

and 

f(eo, z) = [ g(L-a/2eO + z)g(L-d/20 -- z)] L~/2 (3.2) 

Notice that f(O,z) is analytic in q5 for [Im~[ < La/2B and bounded by 

If(O,z)l < exp[ �89 + z12+ IL-d /20-  z[2)] 

= exp[ ~(1~[ 2 + Ldlzl2 ) ] (3.3) 

Hence f+(z) f (O,z)  is analytic for [Im4,[ < La/2B if ~ <�89 -d. f + ( z )  
f(0, z) is easily seen to be nonzero if n o is big enough by splitting the z 
integration to the regions Izl < B and [z] > B and using (a) and (b). Hence 
g'(O) is analytic for lira01 < Ld/2B and 

I g'(~)l < c exp[ ~1~1:] (3.4) 

there. 
Now let ]q)[ < (1 - r + n + l) and let X be the characteristic 

function of the set {z: ]z[ <�89 Notice that for z in the support of X 
]L-a~2 0 + z[ < B if n o is big enough. Write 

g'(q,) = g](0)[ 1 + gi('/')] (3.5) 

where 
f at~ (z)x(z)f(q,, z) 

gi(q') -- f dl z (z)x(z)f(O ' z) (3.6) 
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This makes sense since g'](~) :~ 0 as will be shown below. Notice that 

exp( - �89 c~2) f d/z (z)exp[ - �89 L acz2 ix(z) 

• �89 La[ 6( L-a/2,~ + z) + 6( L-a/24 - z ) ] )  
= 

f d/~ (z )exp( -  �89 LaF(z)] 

= exp - [ �89 gl(~?) 

In virtue of (b) 

[ ~'~(~) - 11 < 2LdS'~o+"exp(C8 "~ ) 

Hence 

is analytic and 

(3.8) 

I~1 < 2Ladn~ Cd "~ (3.10) 

Now, since 

f dlz(z)[1 - X(z) ] f (~ ,z)  < exp(xl~12) f d~(z)exp(taxlzl2)[1 - X(Z)] 

< e x p [ - r  o + n) 2] (3.11) 

for K small enough and n o big enough 

[g~(~)l < Cexp[ - d(n o + n) 2] (3.12) 

Thus 

is analytic and 

We put 

v~~ = - log(1 + ~ )  (3.13) 

I~[ < C e x p [ - e ' ( n  o + n) 2] 

v' = �89 2 + v I + v 2 (3.15) 

v' is analytic for Iq~l<(1--e)Ld/2(n  o + n +  1) and 1 6 1 + 6 2 1 < 2 L  a 
~no+nexp(Ct~no+n). 

Writing 
6 ] +  ~ =  ~ 2 6, x6cq~ + 

where (d2/dqfl)ff(O) = 0 we obtain from the Cauchy formula 

Idcl <<. (36 "~ (3.17) 

(3.14) 

(3.16) 

~i = - l o g  g~ (3.9) 
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Moreover  for 141 < no + n + 1 

1 dml2(O) 
m = 4  

<~ ~ 2LdSn~ )((1- r -m 
m = 4  

= 2(1 - r176176 ) / [1 - (1 - r  -d /2]  

< 8 "~ (3.18) 

if r 8 are close to 1, L >1 L 0 and n o is big enough. Thus we see that  for 
141 < no + n + 1 g ' ( ~ ) =  e x p [ - v ' ( ~ ) ]  where  v ' (0)  is analyt ic ,  v ' ( ~ ) =  
�89 2 + 6'(q,), c' = c + 8c with ]8c I <<. d "~ ~'(0) = O, (d2~'/dep2)(O) = 0 
and [6'1 < 8"~ This implies that for 14l < no + n + 1 

[ g'(q,)[ < exp(~[r 2) (3.19) 

Since by  (4) for 141/> no + n + 1, IIm,/, I < no + n + 1 

] g'(~)[ < exp{[  x + C(n  o + n)-2] l~[  2) (3.20) 

we finally conclude that (a), (b) for g with B = n o + n, ~ = 8 n~ 8 close to 
1, ~ small and n o sufficiently large yields (a), (b) for  g' with B = n o + n + 1, 

= 8 n~ x increased by C(n  o + n) -2 and Ic' - c I < 8 n~ Iterat ion of 
this result proves the convergence of the effective potentials in the dipole 
case claimed in Section 2. 

3.2. q,a 4 

We shall only consider here the d = 4 case, which is more  subtle than 
the other  ones. Consider,  e.g., v(q , )= Xq, 4. To  gain some insight, we com- 
pute perturbatively in X 

tv = (6L2X - 72L6~k2)q~ 2 + (~ - 36L4h2)~b 4 + 0(~ 3) + 0(t~ 6) (3.21) 

Thus to the leading order q,4 is marginal. If we go to the second order  we 
get 

X.+ 1 = X. - 36L4X~ (3.22) 

the solution of which behaves as [36L4(n0 + n)]-1 when n---> 0% which is 
the familiar logarithmic approach to zero. This forces us to be very careful 
about  the n-dependence of the constants during the iteration process. 
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We shall adapt the assumptions (a') and (b') to the inductive proce- 
dure taking B = (n o + n)" with a equal, e.g., to ~ and ~ satisfying 

C_ C+ - - < ~ / < - -  
n o + n n o + n 

where C+  l < 36L 4 < C_- 1. We shall assume that c is a continuous function 
of a parameter c o (e.g., a half of the coefficient at q2 in the initial v) such 
that when c o sweeps an interval [an, fin] then C(Co) goes from - ?/(n o + n) 
to el(n o + n). 

We shall show that if constants are chosen properly then (a'), (b') with 
given n for g implies (a'), (b') with n + 1 and [a,+ 1,/3,+1] c [a,,  B,] for g'. 
Iteration of this result proves the convergence of the effective potentials for 
the ~4 case claimed in Section 2. c(v) is given by the point in the 
intersection of all [an, t8,]. 

Let now 

f(dp, z ) = [  g(L-ldp-t- z )g(L- l~p-  z)] L4/2 (3.23) 

Notice that f(q~,z) is analytic for [Ime~[ < L(no+ n) '~ and uniformly 
bounded for IIm~,l < 2(n o + n) ~. Thus g'(ff) is an analytic function of ~ for 
]Imq~ I < 2(n 0 + n)". As in the dipole case write for I,/,I < (no + n + I) ~ 

g'(~) = g~(~)[ 1 + g i (~)]  

where g], g~ are given by (3.6), (3.7) with X being the characteristic function 
of (z :  Izl <�89 n)~}. Notice that g](q,) is analytic for I~1 < ( 1 -  e) 
L(n o + n + I) ~and  

[g ] (4 ' ) -  1[ .<< C(no+ n) -l+4a (3.24) 

Thus for I~1 < (l  - e)L(n o + n + 1)" and n o big enough 

v] = - log g'l (3.25) 

is analytic. We have to analyze v'~ to the second order in the perturbation 
expansion: 

t 1 2 2 v] = ~cC q~ + ~/q~' - log dtt(z)x(z)exp(- �89 2 - T/t4z 4) 
. 1  

• f (~, z)exp [ - 6~L2q~ 2z2 ] 

+ logf+(z)x(z)exp[- �89 2- ~L4z4]f (O,z) (3.26) 

where f i s  given by (3.23) with g replaced by exp(-v"). Introducing 

(_),= 1 f dt~(z)x(z)exp(- �89 2- ~ k Z 4 z 4 ) / ( * , z )  - (3.27) 
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and 

we obtain 

f dl~ (z)x(z)exp[  - �89 2 - rlL4z4]f (q~, z) 

g'l(q0 = f dl.t(z)x(z)exp( - �89 _ ~L4z4)f  (O,z) (3.28) 

' __1 ~12 . t 2  ljt~4 __ log(exp(_6~L2qflz2))~, log g'l ( 3 . 2 9 )  I)1 - -  ~ c ~  t ? + 

Notice that for n o big enough 

l -  log gll < 2L4~c-l~12eC"-'n2 (3.30) 

Now 

- l o g ( e x p [  - 6~/Z2~2z21 )q, = 67/t2~2(g2)q, - 18"02L4t~4(22; g2)~ -[- O(~3~b 6) 

(3.31) 

Moreover  

(z2)o = 1 + O((n  o + n) - l )  + O((n  o + n) -2) (3.32) 

with first order q~-independent, 

(z2; z2)~ = 2 + O((n  o + n ) - ' )  (3.33) 

Using the Cauchy integral formula to estimate the derivatives we obtain 

where 

and 

t 1 ,~t.k2 4 ~t 
t~ 1 = + tlt ~ .-{- ~ ~" 1"~" 17 /)1 

. . . . .  0 
d@ 4 

(3.34) 

c~ = (c + 6~)L 2 + O((n  o + n )  - 2 )  (3.35) 

,/~ = 7 / -  36L4,/2 + O((n  o + n )  - 2 - 4 a )  (3.36) 

I ,1 < 8 -'n 2 (3.37) 

provided that we restrict ourselves to Iq~i < (n o + n + 1) ~. 
As far as the g~ term is concerned it is a small correction, 

I gll ~ exp[ - ( ( n  0 + n) 2~] (3.38) 

so that 

v' = v,' - log(1 + g;) = �89 2 + n'q" + 6 (3.39) 
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where c', ~/', and U satisfy (3.35)-(3.37). When e sweeps the interval 

n 0 -t- n ' /'/o ~" n 

e' covers an interval 

[ ( - ~ - t - C + ) L  2 

no+ n 

which contains 

+ 0(( no + n)_2), (~ +no+C_n )L~ O((n~ + n)-2) ] 

n o + n + l  ' n o + n + l  

693 

Hence 

Notice that 

1011 .<< ~-1~,2 (3.40) 

We shall show now that 

C_ C+ 
< ~/'~< (3.41) 

no+ n + 1 no+ n + 1 

~ , - 1 . 7 / - ' [  1 - 36L4v + O((n o + "))--l--4a] - |  (3.42) 

~/-l[1 + (36L 4 -  e)~] .<< ~/,-1 < ~/-l[1 + (36L'  + e)7/] (3.43) 

where e ~ 0 if n o ~ oo. Thus 

C+l(no+n)+36L 4 - e <  ~/,-1.<< C-l(no+n)+36L 4 + r  (3.44) 

and consequently 

c + l ( n o  + n + 1) ~< ~1,-1 ~< C_-l(no + n -b 1) 

which is (3.41). 
We are left with bounding g'(~) for [q~[ i> (no+  n + 1) ~, ]Imq~] 

< 2L- l (no + n + 1)C Write q ~ = ~  + iO 2 and ~p_+ = L-lq~ + z. Then we 
have 

g'(dp) = -~  I<t-~l~ll/2 

+ f[z[> L-%,1/2 d#(z)[ g(tp+ )g(tp_ )] L4/2) (3.45) 

if, say, ? ) 2C+ and n o is big enough. Hence the existence of [an+ l, fl~+l] 
C [a n, fin] with required properties follows. (36) and (37) imply clearly that 
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We claim that for ]z I < �89 L - 11q,l I 

]g(q~• )] < e x p [ -  �89 + )4] (3.46) 

Indeed. If [~_+ I >/(no + n) ~ then (3.46) holds by (a). But ]+z 1 >/ L-I[~I - 
~L  (n 0 + n + l )  ~ and I I m q ~ + [ = L - ' [ ~ 2 ] < 2 L - 2 ( n o +  

n + 1)% Hence by (b) for [~___[ < (n o + n) ~ Equation (3.46) holds too if L is 
big enough so that qJ +_ has a small argument. Equation (3.46) implies 

ft21 ,i,,i/2 at' (~)[ g(+ )g(~ )]Lv~ + 
< L -  

< e x p ( -  �89 },L:~,~lZ :] 
< exp[ - '~'1~,14 _ e(n o + n) - '+2~ ] (3.47) 

As far as the second term of (3.45) is concerned, notice that if [z[ 
>�89 then either IR e , +  [ > } L ' l [ , l [  or [ R e , _  I > ~ L - ' l * l l .  Thus 
[g(~+ )g(g'- )l < 2 exp(-  nL~-41~,114 ), say, and 

~zj ~j~,j/2 d~(z)[ g(r )g(r )]L'/2 + 
~> L ~ 

< C exp[ - �89 ~/I,1l 4 ] f~l~ > L_.I4,.I/2dF (z) 

< e x p [ -  �89 4 -  e(n 0 + n) 2~] (3.48) 

I%1 = f d"(~)g(z)L" [I > exp[ - C (n  o + n) -1 ] (3.49) 

(3.45), (3.47)-(3.49) imply 

[g'(*)l < e x p - [  �89 

for [q~[/> (no + n + 1) ~, [Im,/,I < 2L- l (no  + n + 1)". This ends the induction 
step. 

4. THE CORRELATIONS 

The analysis of the correlation functions is an elaboration on the ideas 
already presented. We shall therefore be brief and shall only do in detail 
the two-print function of +4. The d > 4 cases and the dipole gas are even 
easier and we leave them as an exercise. 

The two-point function is (+xq'y)v (we suppress N). Let [ L - i x ]  
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[L-~v]. In this case the Z ~ integral factors and since 

f dl~ (z)f(O, z)z--- 0 

we get 

= L <OEL-'x~'~IL ~>,~ (4.1) 

Let k be the first integer such that [L-~x] = [L-~v] ~ z. Iteration of (4.1) 
gives 

- - 2 ( k - -  1 ) / . ~  ~ \ -- t 
<q)x@> = L \~'tr-*+'xl~'fL-k+M/~k-, = <Gk(4'z)&(q~z) )vk (4.2) 

where in the second step we did one more z integration and defined 

G(*) (L-~%~+r-~-l) 2 = 'AIL-,+,xlAtL-,+,yI(Z )~_,)gk(e~) (4.3) 

with 

Vk=__ tkv, gk ~ e -~ 

f d~ (z)f~_ ,(~, z)z 2 
<z2>k-' ~ f d~ ( z ) f  k_ l((p, z) ( 4 . 4 )  

f.(q,.z) = [  g.(L-iq, + z )g . (L- ' ep-  z)] LV2 (4.5) 

Subsequent integrations give 

<4'xg~y)v = ( Gk + l(gP[L-,zl)gk + l(g?[L-tzl)-l>uk+, (4.6) 

where for l > 1 

fdl i (z)G~+z_,(L- '$+ z)[ gk+l_l(g-l~+ g)] L4-1/2 

x 

Gk+ ~(4') = f d~ (Z)k +,_ ,(0, z) (4.7) 

With due assumptions v. behaves as discussed in the previous section. 
Now the claim is that G.'s have the following properties which will be 
proven inductively: 

(A.) G. is analytic for ]Imq,] < (n o + n) ~, G.(+) = G~( - r  and Ir -1 
IG.I < (n o + n)2%xp[ - �89 a] for Iq~] > (n o + n) ~, [Im~l < 2L-l (n0 + 
H) a, 

(B~) for I@1 < (no + n) ~ 

F. (@) ~ G. (4') g. (@)-t = b.o + b.2q'2-~. (q0 

where #.(0) = (d2/d@2)#.(O) = 0 and ~1#.1 < Ib.2l(no + n) -'/~ 
(C.) fflb.o - b(._l) o - b(._l)21 < 2]b(._~)2l(n o + n) - ' / 2  

~lb.2 - L-%.-u21 < Ib<.-,)21(no + n)-U2 
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Let us consider G k first as given by (4.3)-(4.5). The properties (Ak) are 
proven as (a') in Section 3. Since 

-2(k--  l)A x / ",2 F k = L - 2 k t ~  2 + L -'* L k+lx't~l L-k+l~? (xZ)k l 
[ ] [ . l  - 

and 

we have 

(Z2)k_,~<,=O = 1 + 0((n 0 + k ) - ' )  

Now a straightforward estimation shows that 

[L-2(k-1)A.A. (Z2)k- , -  bko[ < L-2(k- ' )O((no + k)  - l + 2 a )  

Equation (11) implies via the Cauchy integral formula that 

Ibk2- L-Ek I < L-2(k- ' )O((no + k ) - ' )  

IP I < n-2(k- ' )O((no + k) -1+24) 

which imply in turn (Bk). 
We shall pass now to a general induction step. Assume we have shown 

( A n ) - ( C n )  for n < k + l - 1. (A~+t) follows again as (a') of Section 3. For 
Iq~[ < (n o + k + l) ~ we may rewrite (4.7) separating the small and large z 
integrations: 

f d~(z )x ( z )Fk+t_ , (L- '~  + Z)fk+,_,(ep, Z) 
Fk+t(~ ) = fdlz(z)fk+t_l(ep, z ) 

f dt~(z)[1 - X(z) ]Gk+t_i(L-'e~ + z) 

+ 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

f 
(4.14) 

where, as before, X(Z) is the characteristic function of the set (z: lz[  
<�89 o + k + / -7 1)~}- The second term is easily shown to be bounded by 
exp[ - d(n o + k + l)2~]. The first one is equal to [see (4.4) for the notation] 

(X(z)Fk+I_I(L-Idp + Z))k+l_ 1 

= (b(k+t_,) o + b(k+t_,)2L-2r 2) 

• (1 + O ( e x p [ - , ' ( n  o + k + l)2~])} + b(~+,_,)2(X(Z)Z2)k+,_, 

+ (X(z)ffk+,_ , (L- ' •  + Z))k+/_ 1 (4.15) 
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Since 

b( k+'- 02(X(Z)Z2>k+,-I ~'~,=0 = b(~+,_,)211 + 0((n c L k + l ) - ' )  ] (4.16) 

and 

I<X(Z)ffk+t_t(L-' q + Z)>k+,_ll < K-'[b(k+,_l)zl(no + k + l - 1 )  -1/2 

(4.17) 

(4.14) and (4.15) imply the first inequality of (Ck + t)- The second inequality 
also follows, via the Cauchy estimate, from (4.14), (4.15), (4.17) and 

,,(<x(z)z2L+, ' , 0=011 
< + + l)  -'+2") (4.18) 

Moreover the contribution to ffk+t from b(k+l_ 1)2(X(Z)Z2)k+l_ 1 is bounded 
by b(k+Z_l)20((n 0 + k +/)-1+2~). The other one, from (X(x)F~+t_ 1 
(L-le~ + Z)k+~_ I is equal to the contribution from 

[fd~(z)x(Z)Pk.k-l-l(L-l~ 2-{'- z)fkq-l-l(O,Z)/ f ~(z)x(z)fk+l-l(~'Z)] 
for a term bounded by ~-llb(k+l_l)2lexp[--c(n o + k + 1)2"]. [ �9 �9 �9 ] is ana- 
lytic even for Iq)[ < ( 1 -  E)L(n o + k + I)" and bounded there by x -1 
Ib(k+,_O2l(no+ k + l -1)  -1/2. Its contribution to & + l  is estimated for 
[r < (n o + k + l)" by 

1 I d m ~,=o k ~ ~ [ " ' "  ][*1 m 
m=4 

< (1 -- e ) -4L-4[  1 - (1 -- e ) - l L - 1 ]  -I  

• x-~lb(~+z-t)2[(no + k + l -  1) -~/2 

<<.�89 0 + k + / ) -1 /2  (4.19) 

for L > L 0 and e small (we have used again the Cauchy estimate for the 
derivatives). Hence (Bk+l) follows. 

From (C~) we easily obtain for n > k + 1 

bnob(n-l)2- b(n- I)O } = L-2("- ')exp[O((n~ + k)-'/2)(n- k)] (4.20) 
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Since 
N+I  

(e~Oy)v= b(N+,)o = bko + 2 
n = k + l  

(b.o - b(._ 1)o) 

=L2(I'-O[+--I+L 21-@- 2(N-k))l 

(4.21) 

the existence of the thermodynamic limit N ~ m for the two-point function 
follows immediately as well as the decay as d(x, y)-2 claimed in Section 2. 

For general (even) correlation functions 2m (I-Ii= lOx,)v we shall integrate 
out Z~ 1 . . . .  up to Z k, where k is the smallest integer such that all 
[ z - k x i ]  are  equal. This gives 

0~, = (Sk (~ )g~( , ) - ' ) v  k (4.22) 

G~ is easily proven to be analytic for IIm01 < (no + ~)", dk(~,) = Gk(-~) ,  
x-1[ G~I < (no + k)m~exp[-�89 ~(Re~)4] �9 Further Z integrations are done as 
in the case of the two-point function and the existence of the thermody- 
namic limit follows as before. It should be clear that a closer analysis of G~ 
would allow to control the decay of the 2m-point function. This is left to 
the reader. 

Finally the analyticity results stated for the dipole gas case follow in a 
straightforward way from the analysis of Sections 3, 4 and the Vitali 
theorem. 
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